
Correcting Noisy OCR: Context beats Confusion
John Evershed
Project Computing

Canberra
Australia

John.Evershed@projectcomputing.com

Kent Fitch
Project Computing

Canberra
Australia

Kent.Fitch@projectcomputing.com

ABSTRACT

We describe a system for automatic post OCR text correction of

digital collections of historical texts. Documents, such as old

newspapers, are often degraded, so even the best OCR tools can

yield garbled text. When keywords are corrupted, text is invisible

to search tools. Manual correction is not feasible for large

collections. Our non-interactive OCR correction method uses a

"noisy channel" approach. The error model uses statistically

weighted multiple character edits and a novel visual correlation

adjustment using low resolution "reverse OCR". The language

model uses normal and also "gap" word 3-grams, plus some 5-

grams. Word correction candidates are generated by a deep

heuristic search of weighted edit combinations guided by a trie.

Testing shows good improvements in word error rate.

Experiments demonstrate resilience and justify the use of a deep

candidate search.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Information

Filtering; H.3.6 [Information Search and Retrieval]: Library

Automation - Large text archives; I.2.7 [Computing

Methodologies]: Artificial Intelligence - Natural language

processing; I.5.4 [Pattern Recognition]: Applications - Text

processing.

General Terms

Algorithms, Design, Experimentation, Performance.

Keywords

OCR, automatic correction, noisy text, historical documents.

1. INTRODUCTION
For some decades there has been massive, expensive, ongoing

institutional digitisation of textual resources such as books,

magazines, newspaper articles, documents, pamphlets and

ephemera from cultural archives. In addition, declassified

government documents are being released into the public domain,

and many organisations and individuals are converting existing

document images into machine readable text via OCR.

The layer of OCR text is the only realistic way for this vast

document pool to be exposed to researchers of the world, enabling

indexing for search, and access by other natural language

processing tools.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.

DATeCH 2014, May 19 - 20 2014, Madrid, Spain
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2588-2/14/05 $15.00.
http://dx.doi.org/10.1145/2595188.2595200

Because of problems of physical deterioration, the limitations of

scanning and text recognition technology, and the difficulty and

expense of quality control in digitisation projects, there is a

significant number of documents with a word error rate exceeding

20%, resulting in a "dark pool" of digitised documents poorly

represented in search engines.

Simple correction methods, such as comparing against lists of

typical OCR errors do not work - even with good OCR, there are

too many possible combinations to list. Naive use of a standard

spelling checker will not work either. We tried it out of curiosity

and got negative results (it made the word error rate worse on our

test samples). A specialised approach is needed which can exploit

linguistic context to use the redundancy of language (75%

character coding redundancy in English [20]), and the

predictability of OCR character error patterns to achieve reliable

improvements to OCR quality.

We describe an automatic method for processing just the noisy

OCR text, and partially repairing that text, using sophisticated

models of the document language and the OCR error process

(with deep candidate search and a novel word confusion

calculator), to increase the visibility of the documents to

searching, mining and analysis. The models use statistical

language data which can be obtained from a noisy text corpus if

needed.

Our goal was to process poor quality OCR text (such as old

newspaper) in XML ALTO and hOCR formats using commodity

hardware at rates exceeding 1000 words per second, and to at least

halve the word error rate.

In experiments, we statistically examine 6512 error pairs from

newspaper ground-truth corrections, discovering that correctable

words are more likely to be at an edit distance of 4, 5 or 6 than we

had expected. We also report on the efficacy of OCR engine

character confidence levels which we had attempted to use.

We test our system in several ways, scoring our corrections

against ground-truth documents (including documents from a

different locale and culture) and comparing error rates with the

uncorrected OCR. One series of tests included log-entropy term

weighting to estimate effectiveness of correction in a real-world

search engine environment. Good results were achieved. We have

seen consistent reductions in the word error rate by over 60%, a

reduction in search-misses (false negatives) by over 55% and a

log-entropy weighted reduction in search-misses by over 50%.

2. ARCHITECTURE
The system is divided into two components - a high level

document manager, and a low level correction kernel. The

document manager handles document storage and retrieval,

threading, XML unwrapping and rewrapping, and maintenance of

document level context statistics. After extracting the raw text, it

breaks it into blocks to pass to the correction kernel. The

document manager pre-processes column breaks and ensures that

blocks it passes to the kernel have sensible boundaries. The

mailto:Permissions@acm.org

document manager draws on word 5-gram data to quickly triage

the input, making uncontentious and simple corrections, and

identifying text which is very probably correct. It passes to the

kernel blocks containing suspect text and its immediate word

context, along with information based on a wider context beyond

the block: a bag of “topic" words, a parameter representing the

noisiness of the text, and some specific word correction

suggestions.

The lower level correction kernel uses thread-safe data structures

to correct isolated blocks of 15 to 20 blank delimited tokens. It

spends most of its CPU time generating suggestions for each of

the words in the block it has been passed (subject to triage). It

then sorts and culls the suggestion lists, and searches for the best

combination (as detailed in the Algorithms section, below) which

it returns to the document manager.

3. TRAINING
By “training”, we mean acquiring statistics from raw data to build

compressed models. This needs multiple data passes, but does

not require lengthy cycles of unsupervised learning, nor does it

require explicitly labelled data (although the error model can

benefit from such data, if available).

The main requirement is a representative text corpus. The tested

system is built using an Australian historic newspaper corpus,

although we have previously used Wikipedia data.

The first step is to extract 1-gram, 2-gram and 3-gram token

frequency lists. Letter case is retained, and tokenization is done by

simply splitting on white space. Certain surrounding punctuation

is removed from the tokens before use in n-grams.

A fairly crude named entity list (given name, surname or location)

is extracted from the raw 3-grams, and can be augmented from

any lists available.

The n-grams are stored using numeric codes instead of strings.

These codes are defined by our lexicon which is essentially the 1-

gram list with a cutoff frequency, filtered by a simple black list of

common OCR non-word artifacts. Frequencies are smoothed by

fitting to a power law.

The confusion matrix may be re-used on similar corpuses, as it is

letter based, but if needed can be adjusted by using available lists

of sentence corrections. For a corpus in a different language with

roman letters, this weighted edit cost matrix can be approximately

adjusted to account for different letter frequencies, then used in

“bootstrap” re-training by correcting the corpus, selecting high

confidence word corrections, and using them as if they were

ground-truth training pairs.

We can also use the various correction tools to process the lexicon

to generate a short list of dubious words which can be edited

manually and used in a second iteration of training to build a

smaller, better lexicon. This list is 1.7% of our lexicon size but

was NOT applied, as we were interested in the resilience of the

correction process to lexicon errors. So our test results are from a

slightly “dirty” lexicon.

The document manager uses 5-grams derived from Google Web

1T 5-gram dataset [4]. Their use is independent of our kernel

language model. The 5-grams are available for several languages.

4. ALGORITHMS
The process follows the standard analogy to a “noisy channel”

decoding process [19]. From a determination of the probability

that a word will appear in the source document (the language

model), and a determination of the probability of that word being

corrupted into the observed OCR word (the error model) we can

apply Bayes’ rule and search for a candidate which maximises the

probability product. Such OCR correction ideas (hampered by

hardware limitations) date back to 1964 [22].

In our approach we use a deep search for candidates which are

neighbours of the OCR words, and evaluate them using the error

model with the language model.

We apply the language model in 2 stages. The first stage uses a 1-

gram model to reduce the size of the candidate lists, and then a 3-

gram model is applied combinatorially to pick the best suggestion

path with respect to the language context.

Both the document manager and kernel use language models to

triage the incoming text, identifying between 60% and 70% of

text as "beyond suspicion" and hence not requiring further

processing.

4.1 Error Model
An OCR error model is vital in suggesting and evaluating

candidates. At the heart of the error model is a confusion matrix

giving conditional probabilities of character edits, using both

single character edits and edits involving character pairs (such as

rn and th). The probabilities can be moderated by a hint as to the

prevailing OCR fidelity as observed at the document management

level.

The character edit probabilities stored in the confusion matrix are

used in several ways. A word can be analysed to estimate its

“fragility”, the probability that OCR may change it. The matrix

can be used to look up the possible correction edits applicable at

each letter position of an OCR word, in order of conditional

probability, as required by some of our suggestion generators.

Finally the matrix can be used to help derive the probability of a

false word O being generated by OCR given the assumption that

candidate word W is the correct word. We use negative log

probability units for this measure, calculated by deriving the most

likely weighted multiple character edit path from W to O using a

Levenshtein algorithm [6,23] modified to handle statistically

weighted character split, pair and join operations as well as the

usual substitute, insert and delete. Essentially, the cost of the path

is the sum of the character edit costs, including the identity edit

which also has a statistically derived cost. Our calculation also

incorporates the fact that edits are not strictly independent, as the

OCR process tends to be a length preserving text transformation

(so excesses of deletes or inserts are penalised).

We call the log measure of O conditional on W the “confusion

cost”. It is an informal measure of distance from W to O, but it

does not define a strict metric space, nor is it a true measure of

probability because it derives from the computed probability of

the most likely path from W to O, rather than the probability sum

over all paths. Nevertheless it is conceptually useful, and works

excellently as the error model part of the noisy channel costing.

We can also measure the similarity of W and O with a novel

“reverse ocr” procedure. We generate very low resolution glyph

bitmaps for the word pair, using a generic font (based on linotype)

and overlay the bitmaps in memory, iteratively adjusting

alignments to find a reasonable position of correspondence, then

calculate a bit correlation measure. This similarity measure has

been previously mapped as a confusion cost estimator, using

simple regression on a sample of pairs. So in any particular case,

in practice, we can get a slightly improved confusion cost by

using a linear combination of the matrix derived cost and (with a

lower weight), the reverse OCR derived estimate.

4.2 Language Model
The language model is needed to contextually evaluate correction

suggestions. We use word 1-grams, 2-grams and 3-grams with

Kneser Ney style interpolated backoff [10]. The proportion of

unseen n-grams is estimated by fitting a power law distribution.

Final backoff from word 1-gram uses character 4-grams plus any

available lists of good words held in a Bloom Filter [2], and our

named entity list. Numerics are specially treated, and a case

variant, and word affix analysis is done to obtain a good

probability estimate for non-lexicon words.

The 1-gram lookup is different to the 2-gram and 3-gram, and is

incorporated into the lexicon, structured as a minimal directed

acyclic word graph [5] which can also yield the extent of partial

word match, the number of words with any given prefix, and an

indication of whether a full word can be reached or not after the

addition of various numbers of characters.

As well as usual left-to-right n-grams, we use a “gap 3-gram” to

give the probability of a word conditional on its left and right

neighbours, and to identify likely candidates, given the neighbour

words. This is used to help generate correction candidates, as a

triage tool, and in final checking of the best correction candidate

paths.

We also use word 5-grams in the document manager. These are

used without smoothing or backoff to help triage “known good”

and to generate suggestions (complementary to the suggestions

generated in the kernel modules).

4.3 Candidate Generation
We need to generate suggestions before any correction can take

place. Suggested words can come from the language model or the

error model. Our system allows for multiple suggestors to be

“plugged in”. An example of when the language model is most

useful is in a garbled phrase such as “Antarctic xxxxx sheet”.

Obviously the suggestion is “ice” and can easily be obtained using

word trigrams in a way that does not need further explanation. A

different example is “The KvaiiKcllcal press” where the correct

suggestion is “Evangelical”. This can actually be generated as a

top suggestion by our current candidate generator using error

model probabilities of the individual edits ‘K’->’E’, ‘ii’->’n’, ‘K’-

>’g’, ‘c’->’e’, and ‘l’->’i’. It is non trivial and is described below.

The main candidate generator starts with a “seed” word, which is

a dubious OCR-generated word, and explores multiple character

edit paths which have a promise of leading to a lexicon word

within a reasonable probabilistic confusion cost. This search uses

the lexicon restructured as a trie to make it easy to track character

paths to words. An A* heuristic search [17] is used to cope with

the complexity and ensure good paths emerge first.

To prepare for generation from a particular seed, the edits possible

at each character position are looked up in the confusion matrix to

create a list of coded edits. Each edit code designates: up to 2

emitted characters; the number of seed characters consumed (1, 2,

or 3); and the cost (with high cost cut off). The edit cost is the

scaled negative log probability of OCR emitting those characters

conditional upon consuming the implied seed characters. The

identity character edit has a low, but non zero, cost reflecting the

character “fragility”. There are usually 90 to 100 edits listed per

position. This seed structure could also be considered as a

weighted finite state automaton with a state for each seed

character and the transition arcs labelled by the emitted

character(s) and with the weight being the edit cost.

The A* search process traverses the lexicon trie and the seed edit

structure. Each step involves popping the partial path with the

lowest estimated completion cost off a priority queue, and

extending that path by any seed edits possible which are also valid

paths from the associated trie position, then for each such

extension, calculating the new estimated completion cost and

pushing it onto the queue.

The completion cost heuristic we use is mainly based on number

of residual characters in the seed, and the 4-gram character cost of

that residual path. It is not technically “an admissible heuristic” so

there is no guarantee that the first complete path is the best, but as

we are gathering many suggestions, that is not a problem - when

completed paths are popped off the queue, they are pushed onto a

separate output priority queue after modifying the final

accumulated path cost by weighting it with the language cost of

the lexicon word. Our A* terminates when there is sufficient

candidates of quality in the output queue.

The A* suggestion procedure uses the most CPU of the

components in our correction system, so it needs to be efficient.

We implement it with bit-mapped integer arrays, and use heuristic

adjustment, high cost path pruning and duplicate detection. The

priority queues are based on min-max heaps [1] so that queued

cost ranges can be examined and the heap size kept small for the

output queue. The Trie is split into several Tries, each covering

different (but overlapping) subsets of the lexicon based on word

length. In future we may seek more efficiencies, for example by

using a “divide and conquer” approach similar to that in [9].

Because this candidate generation process is guided not by simple

discrete edit distance summation, but by probability, it will choose

likely 3, 4 or 5 letter edit combinations over unlikely 2 letter edits.

However, it should be noted that we cannot guarantee, for

example, to output all candidates in a Levenshtein distance of 2.

This is because of the nature of our search and also because, as we

are using fine grained costing, we effectively perform candidate

filtering in the search rather than after having extracted all the

neighbours.

Candidates are also generated in other ways, apart from the word

mutation method describe above: by splitting and joining at word

level, from a “guess” using the left and right neighbouring words

and the “gap 3-gram” of the language model, and from

suggestions generated and supplied by the document manager.

The suggestor collects candidates from the sub-models and adds

them to a priority queue according to the sum of their unigram

language cost (negative log probability) and their conditional

confusion cost (negative log probability of the OCR word given

the candidate word). Excessively costly suggestions are culled.

When a word has many low cost suggested candidates, we take it

as evidence that the OCR word is in a “crowded environment”

with little redundancy and less chance of accurate correction, so

we increase the suggestion cost values accordingly.

4.4 Correction
This final correction step is needed because we are automatically

correcting. Therefore we need to apply similar judgements that a

human operator would make in selecting the best combination of

the final culled correction candidates from what can be trillions of

possible combinations, using knowledge of language context

balanced against the likelihood of the corresponding OCR words

deriving from the chosen candidates.

With poor quality OCR, there will be more dubious words, and

more candidate lists in a block of words. In addition, the paths

through these lists are not simple, because we must cater for word

joins and word splits.

We use a two stage approach for this final language costing. The

first stage is to advance a single best word path from left to right,

minimising the error and trigram language cost sum at each step

but using only the top 3 suggestions for any word.

The second stage is to iteratively apply stochastic variational

changes to this initial path, using a simple style of simulated

annealing named “record to record travel” and described by

Dueck [7]. At each iteration we select and change a candidate and

calculate the effect on the total path cost, temporarily accepting if

near the best cost, and tracking the actual best path and its cost.

The process terminates after a number of iterations based on the

number of candidates.

Although the best path will usually include many top ranked

candidates, there are many cases where lower ranked suggestions

are selected due to lower contextual cost.

5. OBSERVATIONS AND EXPERIMENTS

5.1 OCR confidence ratings
In early development we analysed the ALTO XML CC attribute

(character confidence) digits passed on from the OCR engine,

trying to fit them mathematically to modify our error model.

Unfortunately we gained little benefit, and abandoned their use.

We noted that the small punctuation (dot, comma, quotes) were

almost NEVER given low confidence, yet we know they are very

unreliable. The letters O,C,E,G,I,c,i,l,1,t,S were usually rated as

good, but M,W,g,b,m,w,d rated as bad. We assume letters which

attract strong signals on a few feature detectors are given good

confidences. Paradoxically, the fact that ‘i’ is highly similar to

(and so frequently confused with) a very small cohort of letters,

implies higher “confidence” that it will rarely be confused with a

much larger set of other letters.

5.2 Resilience to lexicon errors
An effective lexicon needs to be derived from a large corpus

similar to the texts to be corrected. Except for very modern texts,

this means that the lexicon is likely to contain an unintended set of

OCR artifacts, such as “hospltal” or “hononary” which are derived

from common words via very common character edits, so that

they have a corpus frequency greater than the cut off used in

building the lexicon. Such words can be detected in the lexicon by

letting our system process its own lexicon, noting words with a

correction candidate having a very small confusion cost and a

significant language cost difference. The reason this can work is

that we have a fine grained confusion cost.

We automatically flagged 1.7% of our test lexicon word types as

dubious (possibly OCR artifacts). However, due to the fact that

common words, and especially short words, have many close

orthographic neighbours, the OCR artifacts can only be practically

removed from the lexicon by including a human in the loop. This

is simple, but we decided to leave these OCR artifacts in the

lexicon for our tests. It had no real effect on performance, because

the suggestor easily generated the correct word and the noisy

channel logic selected that correct word.

Of course, the nature of language itself implies that no lexicon can

be perfect, but we can take comfort that most imperfections lie in

the extreme low frequency long tail, and do not have much impact

on correction performance when using frequency based n-grams.

We note the need to derive the correction lexicon from a

homogeneous relevant corpus, as a corpus containing both

modern and historical word spelling variants may yield

infelicitous corrections to the more frequent modern spelling

form, if the spelling edit also happens to be a very common OCR

edit.

5.3 Empirical study of errors
We have a mechanism where words in context can be judged to

select the best combination of correction candidates by balancing

the error and language model costs. But good correction is

impossible without a good candidate generator.

Our main candidate generator takes a possibly corrupt OCR word

and searches for a "close" lexicon word. Because this can be very

CPU intensive, we wanted to study some OCR errors to find out

the "close enough" point to bound the candidate search.

So we extracted every word error pair from OCR aligned with

ground-truth newspaper text. We considered all word to word

correction pairs, where neither word contained blanks, and

removed normal word punctuation (brackets, quotes, commas,

periods etc). We retained all such word pairs, including numerics,

stranded punctuation, uncorrectable garbage, corrections to non-

lexicon words, and even a few bad pairs resulting from alignment

error or imperfect "ground-truth". This yielded 8991 token pairs

(6512 OCR word types). We used our candidate generator in

stand-alone mode to generate up to 12 candidates per OCR token.

To illustrate why we do not attempt correction by using standard

error lists, we note that the simple word 'the' had 95 error types

even in our relatively small sample, with 28 of them being seen

once only.

The spelling correction literature, as surveyed by Kukich [14], has

various estimates of the closeness of correction pairs. Damerau [6]

suggested that 80% of spelling errors are one edit [6, 23] away

from the correct word. However, spelling and OCR errors differ.

OCR engines are not tricked by rhyme, rhythm, reason, grammar

or keyboards, but are affected by visual noise bursts. Tanner [21]

showed a high character error rate of 16.4% and word error rate of

22% in 19th century newspapers, which (given the average word

token length of 5) is suggestive of error bursts - multiple character

edits per word.

We will use E1, E2, E3 etc to denote an edit distance (number of

character substitutions, deletions and insertions). We found in our

sample that 90% of the pairs were separated by E3 or less. If the

residual 10% were "hopeless cases" we could bound our search at

E3 with a saving of CPU time. However, we found that for 46.8%

of these residual "bad" words, the correct suggestion was

generated. And in a surprising 30.8%, the top ranked suggestion

was correct at E4, E5 and E6. Even at E6, we observed 21 correct

top ranked suggestions for the 99 OCR tokens at E6.

The easy pickings at E4, E5 and E6 were usually longer words

which are less affected by multiple edits as they have fewer

orthographic neighbours that they can be confused with. They are

also more valuable words, likely to make good search terms, and

so are worth correcting.

Simply using E6 as a fixed bound on candidate search is not

viable as most tokens are less than 6 letters long (with a median

between 4 and 5 letters). Candidate lists based on such an

approach would be enormous.

This is why we chose an A* search of the lexicon for our

candidate generator, using a fined grained probabilistic measure

of editing cost, with character edit costs derived in advance

statistically. The candidates emerge in approximate probability

order, and likely E4, E5 and E6 candidates will therefore appear

before unlikely E1 and E2 candidates, and we stop the search

when enough "good" candidates have emerged (between 1 and

20).

To illustrate the quality of suggestions, Table 1 shows OCR and

the top suggestion (which is an “easy” correction) at E6, E7 and

E8, all of which are very difficult to guess.

Table 1. Example E6, E7 and E8 suggestions

OCR Top Suggestion

Parhumuitar} Parliamentary

I.iulwuvB Railways

Itegtniont Regiment

niltfltory adultery

uj.rccu.eut agreement

couniutfc.o committee

cnuipuii company

dctoimiuatJOu determination

uiidcrtikcr'a undertaker's

6. TESTS AND RESULTS

6.1 Datasets
Raw OCR text from a relevant corpus, paired with ground-truth

text, is needed. It is hard to find good ground-truth, and it is

tempting to start with good text and artificially synthesise a

degraded image for OCR, but we wanted real data, preferably

from early newspapers processed by ABBYY FineReader, as that

constitutes the bulk of material.

We attempted an evaluation on 3 datasets:

1. “Mostly-corrected” medium length articles from the Sydney

Morning Herald, 1842-1954. These yielded a large amount of text,

but as we discovered, poor quality ground-truth.

The National Library of Australia’s Trove Digitised newspapers

[16] site contains over 10 million OCR'ed newspaper pages. Each

page is zoned into its component articles. The public can correct

the OCR [12], and as of March 2014, over 120M column-lines of

text have been corrected. Although this seems a vast amount, only

a small percentage of articles have any corrections [11].

From the NLA newspapers web site, it is possible to retrieve for

an article both the most recent version of the text (incorporating

all corrections made to-date) and a complete history of corrected

line pairs (showing the text before and after the correction and the

date of the correction). Hence, by obtaining a copy of the current

version of the text and then by backing-out corrections in reverse-

date order on that copy, it is possible to recreate the original text,

as OCR'ed. For this dataset we chose medium length (between

100 and 1000 word) news articles having a total number of line

corrections of at least 85% of the number of lines in the article.

Note that this does not mean that the entire article or even 85% of

it has been corrected, as a single line corrected 85 times in a 100

line article would meet this 85% criteria, but it does serve to

identify articles which humans have intensively corrected.

It soon became apparent that is it not possible to treat even

extensively corrected versions of articles as ground-truth.

Amongst the problems: (i) Not all lines with errors have been

corrected. Even with the 85% criteria, correctors often leave a

heading or final paragraph uncorrected, or just miss 'obvious'

errors in a line and don't correct the line. Human corrected lines

often contain uncorrected errors such as “e” erroneously OCR'ed

as “c” (as in “Thc”) and “l” OCR’ed as “I” (as in “ltaly”). (ii) Line

boundaries are changed. Some correctors occasionally move text

across line boundaries for no apparent reason. Sometimes this is

minor, such as combining both parts of a hyphenated word on its

starting line and removing the hyphen. Other times, it is less

predictable, and extensive. (iii) Words are changed. Quite

commonly names formed as, for example “M'Donald” are

corrected as “McDonald”. Occasionally, newspaper typos are

corrected, and words are deliberately changed rather than

corrected. (iv) Content is added. Frequently the OCR and zoning

process misses text at the start or end of line, entire lines, or a

paragraph, typically at the end of an article.

Such issues create many problems when attempting to evaluate

the performance of an OCR correction process, both because the

human ground-truth is not accurate and because the raw OCR is

totally missing some content that appears in the ground-truth. Due

to the poor quality of the ground-truth in this dataset, we

abandoned our attempt to use it for performance evaluation.

2. Completely corrected medium-length articles from the Sydney

Morning Herald, 1842-1954. A randomly selected subset of

Dataset 1 containing 49 thousand words in 159 articles

additionally corrected by us to ground-truth.

3. Article text from the Library of Congress Chronicling America

newspaper archive. A randomly selected sample of 18 thousand

words from 49 articles from 5 U.S. newspapers manually

corrected by us to ground-truth.

All 3 datasets are available for download, linked from the

overProof evaluation dataset web site [18].

6.2 Methodology
We corrected the text as OCR’ed using the methods described in

this paper, giving us three versions of the text for each article: (i)

text as OCR'ed, (ii) ground-truth version of this text, produced by

human correction of the OCR text, and (iii) automatically

corrected text.

We performed three measurements on each dataset:

1. Recall improvement. Finding an article in a search engine

relies on the indexing of the correct article text. This measurement

calculates the reduction in search misses achieved after article text

correction. It does this by comparing the number of unique

ground-truth words found amongst the OCR text with the number

found amongst the corrected text.

2. Readability improvement. The readability of article text is

determined by the accuracy of the digitised text. This

measurement calculates the reduction in the number of erroneous

words after article correction. Note that whereas the recall

improvement measurement requires that only one of possibly

several occurrences of a ground-truth word be accurate, this

measurement considers how many occurrences are correct.

3. Weighted-recall improvement. Similar to the first

measurement, but attempts to also weigh words based on their

entropy, placing a higher value on the correction of words whose

appearance in a search index is more likely to result in more

relevant documents being returned to a searcher [8].

Testing was performed as follows:

1. Words are extracted from each version by splitting the text on

white space. Leading and trailing punctuation are discarded.

Single character words, words starting with currency symbol or

containing numbers and other non-alphabetic characters (other

than hyphen and apostrophe) are discarded. Hyphenated words are

changed to their non-hyphenated form. Words are changed to their

lower-case form.

2. The entropy of ground-truth words is calculated for the dataset.

3. A set of unique words appearing in each version (original OCR,

ground-truth and corrected) is created, recording the number of

times they appear in each version.

4. Words from the ground-truth version are checked for

appearance in the original OCR and corrected version. For the

recall measurement, only presence or absence is noted. For the

readability/word-correction measurement, the number of

occurrences of words is counted. For the weighted-recall

measurement, the log of the occurrence count of the word in the

article is multiplied by the word document entropy.

6.3 Results
The results of tests on Datasets 2 and 3 are shown in Table 2 and

Table 3 respectively.

We plotted reduction in recall misses against uncorrected recall

for each article in Dataset 2 (Figure 1) and recall for each article

in Dataset 2 before and after correction (Figure 2). Equivalent

graphs for Dataset 3 show similar distributions of good reductions

in recall misses across a range of OCR’ed text qualities.

Table 2. Recall and word error for Dataset 2

Measurement Uncorrected Corrected Improvement

Recall misses 16.2% 6.6% 59.3%

Word Error rate 18.5% 6.3% 66.0%

Weighted recall misses 16.2% 7.1% 56.0%

Table 3. Recall and word error for Dataset 3

Measurement Uncorrected Corrected Improvement

Recall misses 16.0% 6.7% 57.7%

Word Error rate 19.1% 6.4% 66.5%

Weighted recall misses 16.0% 7.4% 54.0%

7. RELATED WORK
Because we are describing a complete end to end correction

system, there is related work in the fields of spelling correction,

speech recognition, statistical language modelling, DNA

matching, and search algorithms which is too numerous to list. In

the specific field of approximate search for candidates in lexica,

there are some other relevant approaches. Gerdjikov, Mihov,

Mitankin and Schulz [9] describe a highly optimised method of

extracting all candidates at a given Levenshtein edit distance.

Huldén [13] describes another approach using A* search. Boytsov

[3] surveys the state of the art in this area as at 2011.

8. COMPARISON WITH HUMAN

PERFORMANCE
Anecdotally, a human corrector (HC) is able to achieve high

quality results, although individual HC units differ greatly. An HC

takes years of expensive training, but even then has a mediocre

Figure 1. Reduction in recall misses

 Figure 2. Recall before and after correction

vocabulary, much less than the size of our lexicon. A typical HC

is poor on character by character checking and can miss very

obvious errors, especially involving the letters i, l, I, 1, 0, O, o, e,

c.

Although expensive, there is a good supply of HC units.

Unfortunately, quality is variable and performance is context

dependent - topic areas such as football or science or knitting

show large individual differences in HC performance. Ideally, HC

units should be tested before use. As HC units are analog in nature

rather than digital, they cannot deal directly with the digitally

stored text data but need devices to bridge the “analog gap” which

lowers the HC correction rate. Maximum observed sustained rate

for an HC on Australian newspapers [16] is about 8 words per

minute, and appeared to be limited mainly to the specialised area

of genealogy. By comparison, software such as ours can process

10,000 times faster on a single commodity server, and this rate

can be arbitrarily increased by adding extra hardware. Note also

that while silicon based computer hardware performance increases

annually, the basic HC hardware performance has not changed in

millennia. Multiple HC units can be used in parallel to correct a

-60

-40

-20

0

20

40

60

80

100

0 20 40 60 80 100

OCR Recall (%)

R
ed

u
ct

io
n

 in
 r

ec
al

l m
is

se
s

 a
ft

er
 c

o
rr

ec
ti

o
n

 (
%

)

0

20

40

60

80

100

0 20 40 60 80 100

R
ec

al
l a

ft
er

 c
o

rr
ec

ti
o

n
 (

%
)

OCR Recall (%)

50% improvement
boundary

corpus, but the work rate can drop as correction coverage

increases. This is due to “selective topic attachment” and the fact

that individual HC units can disengage when the availability of

uncorrected text articles in that topic dwindle to low values.

Humans may be slow, but they have a deep understanding of

language, which is especially required in the final step in

automated text correction - judging the best sentence composed

out of the automatically generated word correction candidates.

This ability can be measured by the Microsoft Research sentence

completion challenge [24], the state of the art solution being a

recurrent neural network [15]. This could point to the future of

automatic OCR correction but unfortunately requires (as with

humans) a long training time and a large amount of training data

(which may be unavailable in historical text).

9. CONCLUSIONS
Searching or mining a digitised text corpus can be fundamentally

limited by the inconsistent quality of OCR text.

We described an unsupervised OCR correction system using

statistically weighted multiple character edits, novel visual

correlation adjustment, a high context language model, and

multiple candidate generators, including a deep best-first

candidate search.

Our experiments confirmed that quality candidates can be

generated at large edit distances.

The implementation was tested against ground-truth historic

newspaper text from several sources, and delivered a reduction in

word error rate of over 60% and a reduction in search-misses of

over 50%. While gathering ground-truth, we noted that even

articles corrected by humans are far from perfect.

Our system is a fully functional end to end batch OCR corrector

delivering corrected texts at a high rate on a standard commercial

"cloud" server. We are satisfied with the principles of the

approach and we are currently investigating minor modifications

to further enhance correction performance.

10. REFERENCES
[1] Atkinson, M. D., Sack, J. R., Santoro, N., & Strothotte, T.

(1986). Min-max heaps and generalized priority queues.

Communications of the ACM, 29(10), 996-1000.

[2] Bloom, B. H. (1970). Space/time trade-offs in hash coding

with allowable errors. Communications of the ACM, 13(7),

422-426.

[3] Boytsov, L. (2011). Indexing methods for approximate

dictionary searching: Comparative analysis. Journal of

Experimental Algorithmics (JEA), 16, 1-1.

[4] Brants, T., & Franz, A. (2009). Web 1T 5-gram, 10 European

languages version 1. Linguistic Data Consortium,

Philadelphia.

[5] Daciuk, J., Mihov, S., Watson, B. W., & Watson, R. E.

(2000). Incremental construction of minimal acyclic finite-

state automata. Computational linguistics, 26(1), 3-16.

[6] Damerau, F. J. (1964). A technique for computer detection

and correction of spelling errors. Communications of the

ACM, 7(3), 171-176.

[7] Dueck, G. (1993). New optimization heuristics: the great

deluge algorithm and the record-to-record travel. Journal of

Computational Physics, 104(1), 86-92.

[8] Dumais, S. T. (1991). Improving the retrieval of information

from external sources. Behavior Research Methods,

Instruments, & Computers, 23(2), 229-236.

[9] Gerdjikov, S., Mihov, S., Mitankin, P., & Schulz, K. U.

(2013). Good parts first-a new algorithm for approximate

search in lexica and string databases. arXiv preprint

arXiv:1301.0722.

[10] Goodman, J. T. (2001). A bit of progress in language

modeling. Computer Speech & Language, 15(4), 403-434.

[11] Hagon, P. (2013) Trove Crowdsourcing Behaviour. In

Australian Library & Information Association Information

Online 2013 Proceedings. Retrieved from
http://www.information-

online.com.au/pdf/Tuesday_Concurrent_2_1125_Hagon.pdf

[12] Holley, R (2009). How Good Can It Get? Analysing and

Improving OCR Accuracy in Large Scale Historic

Newspaper Digitisation Programs. D-Lib Magazine, 15(3/4),

1082-9873.

[13] Huldén, M. (2009). Fast approximate string matching with

finite automata. Procesamiento del lenguaje natural, 43, 57-

64.

[14] Kukich, K. (1992). Techniques for automatically correcting

words in text. ACM Computing Surveys (CSUR), 24(4), 377-

439.

[15] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013).

Efficient estimation of word representations in vector space.

arXiv preprint arXiv:1301.3781.

[16] National Library of Australia (2014, January 5). Trove

Digitised Newspapers. Retrieved from http://trove.nla.gov.au/newspaper

[17] Och, F. J., Ueffing, N., & Ney, H. (2001, July). An efficient

A* search algorithm for statistical machine translation. In

Proceedings of the workshop on Data-driven methods in

machine translation -Volume 14 (pp. 1-8). Association for

Computational Linguistics.

[18] Project Computing (2014, January 5). OverProof Evaluation

Data. Retrieved from

http://overproof.projectcomputing.com/datasets/

[19] Shannon, C. E. (1948). A mathematical theory of

communication. Bell System Technical Journal, 27(7,10),

370-423, 623-656.

[20] Shannon, C. E. (1951). Prediction and entropy of printed

English. Bell system technical journal, 30(1), 50-64.

[21] Tanner, S., Muñoz, T., & Ros, P. H. (2009). Measuring mass

text digitization quality and usefulness. D-Lib Magazine,

15(7/8), 1082-9873.

[22] Vossler, C. M., & Branston, N. M. (1964, January). The use

of context for correcting garbled English text. In Proceedings

of the 1964 19th ACM national conference (pp. 42-401).

ACM

[23] Wagner, R. A., & Fischer, M. J. (1974). The string-to-string

correction problem. Journal of the ACM (JACM), 21(1),

168-173.

[24] Zweig, G., & Burges, C. J. (2011). The Microsoft Research

sentence completion challenge. Technical Report MSR-TR-

2011-129, Microsoft.

http://trove.nla.gov.au/newspaper
http://overproof.projectcomputing.com/datasets/

