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ABSTRACT 

We describe a system for automatic post OCR text correction of 

digital collections of historical texts.  Documents, such as old 

newspapers, are often degraded, so even the best OCR tools can 

yield garbled text.  When keywords are corrupted, text is invisible 

to search tools.  Manual correction is not feasible for large 

collections. Our non-interactive OCR correction method uses a 

"noisy channel" approach.  The error model uses statistically 

weighted multiple character edits and a novel visual correlation 

adjustment using low resolution "reverse OCR".  The language 

model uses normal and also "gap" word 3-grams, plus some 5-

grams.  Word correction candidates are generated by a deep 

heuristic search of weighted edit combinations guided by a trie.  

Testing shows good improvements in word error rate.  

Experiments demonstrate resilience and justify the use of a deep 

candidate search. 

Categories and Subject Descriptors 

H.3.3 [Information Search and Retrieval]: Information 

Filtering;  H.3.6 [Information Search and Retrieval]: Library 

Automation - Large text archives; I.2.7 [Computing 

Methodologies]: Artificial Intelligence - Natural language 

processing; I.5.4 [Pattern Recognition]: Applications - Text 

processing. 

General Terms 

Algorithms, Design, Experimentation, Performance. 

Keywords 

OCR, automatic correction, noisy text, historical documents. 

1. INTRODUCTION 
For some decades there has been massive, expensive, ongoing 

institutional digitisation of textual resources such as books, 

magazines, newspaper articles, documents, pamphlets and 

ephemera from cultural archives. In addition, declassified 

government documents are being released into the public domain, 

and many organisations and individuals are converting existing 

document images into machine readable text via OCR. 

The layer of OCR text is the only realistic way for this vast 

document pool to be exposed to researchers of the world, enabling 

indexing for search, and access by other natural language 

processing tools. 
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Because of problems of physical deterioration, the limitations of 

scanning and text recognition technology, and the difficulty and 

expense of quality control in digitisation projects, there is a 

significant number of documents with a word error rate exceeding 

20%, resulting in a "dark pool" of digitised documents poorly 

represented in search engines. 

Simple correction methods, such as comparing against lists of 

typical OCR errors do not work - even with good OCR, there are 

too many possible combinations to list. Naive use of a standard 

spelling checker will not work either. We tried it out of curiosity 

and got negative results (it made the word error rate worse on our 

test samples). A specialised approach is needed which can exploit 

linguistic context to use the redundancy of language (75% 

character coding redundancy in English [20]), and the 

predictability of OCR character error patterns to achieve reliable 

improvements to OCR quality.     

We describe an automatic method for processing just the noisy 

OCR text, and partially repairing that text, using sophisticated 

models of the document language and the OCR error process 

(with deep candidate search and a novel word confusion 

calculator), to increase the visibility of the documents to 

searching, mining and analysis. The models use statistical 

language data which can be obtained from a noisy text corpus if 

needed.  

Our goal was to process poor quality OCR text (such as old 

newspaper) in XML ALTO and hOCR formats using commodity 

hardware at rates exceeding 1000 words per second, and to at least 

halve the word error rate. 

In experiments, we statistically examine 6512 error pairs from 

newspaper ground-truth corrections,  discovering that correctable 

words are more likely to be at an edit distance of 4, 5 or 6 than we 

had expected. We also report on the efficacy of OCR engine 

character confidence levels which we had attempted to use.   

We test our system in several ways, scoring our corrections 

against ground-truth documents (including documents from a 

different locale and culture) and comparing error rates with the 

uncorrected OCR. One series of tests included log-entropy term 

weighting to estimate effectiveness of correction in a real-world 

search engine environment.  Good results were achieved. We have 

seen consistent reductions in the word error rate by over 60%, a 

reduction in search-misses (false negatives) by over 55% and a 

log-entropy weighted reduction in search-misses by over 50%. 

2. ARCHITECTURE 
The system is divided into two components - a high level 

document manager, and a low level correction kernel. The 

document manager handles document storage and retrieval, 

threading, XML unwrapping and rewrapping, and maintenance of 

document level context statistics. After extracting the raw text, it 

breaks it into blocks to pass to the correction kernel. The 

document manager pre-processes column breaks and ensures that 

blocks it passes to the kernel have sensible boundaries. The 
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document manager draws on word 5-gram data to quickly triage 

the input, making uncontentious and simple corrections, and 

identifying text which is very probably correct.  It passes to the 

kernel blocks containing suspect text and its immediate word 

context, along with information based on a wider context beyond 

the block: a bag of “topic" words, a parameter representing the 

noisiness of the text, and some specific word correction 

suggestions.  

The lower level correction kernel uses thread-safe data structures 

to correct isolated blocks of 15 to 20 blank delimited tokens. It 

spends most of its CPU time generating suggestions for each of 

the words in the block it has been passed (subject to triage). It 

then sorts and culls the suggestion lists, and searches for the best 

combination (as detailed in the Algorithms section, below) which 

it returns to the document manager. 

3. TRAINING 
By “training”, we mean acquiring statistics from raw data to build 

compressed  models.  This needs multiple data passes, but does 

not require lengthy cycles of unsupervised learning, nor does it 

require explicitly labelled data (although the error model can 

benefit from such data, if available).    

The main requirement is a representative text corpus. The tested 

system is built using an Australian historic newspaper corpus, 

although we have previously used Wikipedia data. 

The first step is to extract 1-gram, 2-gram and 3-gram token 

frequency lists. Letter case is retained, and tokenization is done by 

simply splitting on white space. Certain surrounding punctuation 

is removed from the tokens before use in n-grams.   

A fairly crude named entity list (given name, surname or location) 

is extracted from the raw 3-grams, and can be augmented from 

any lists available. 

The n-grams are stored using numeric codes instead of strings. 

These codes are defined by our lexicon which is essentially the 1-

gram list with a cutoff frequency, filtered by a simple black list of 

common OCR non-word artifacts. Frequencies are smoothed by 

fitting to a power law. 

The confusion matrix may be re-used on similar corpuses, as it is 

letter based, but if needed can be adjusted by using available lists 

of sentence corrections. For a corpus in a different language with 

roman letters, this weighted edit cost matrix can be approximately 

adjusted to account for different letter frequencies, then used in 

“bootstrap” re-training by correcting the corpus, selecting high 

confidence word corrections, and using them as if they were 

ground-truth training pairs. 

We can also use the various correction tools to process the lexicon 

to generate a short list of dubious words which can be edited 

manually and used in a second iteration of training to build a 

smaller, better lexicon. This list is 1.7% of our lexicon size but 

was NOT applied, as we were interested in the resilience of the 

correction process to lexicon errors. So our test results are from a 

slightly “dirty” lexicon. 

The document manager uses 5-grams derived from Google Web 

1T 5-gram dataset [4].  Their use is independent of our kernel 

language model.  The 5-grams are available for several languages.  

4. ALGORITHMS 
The process follows the standard analogy to a “noisy channel” 

decoding process [19]. From a determination of the probability 

that a word will appear in the source document (the language 

model), and a  determination of the probability of that word being 

corrupted into the observed OCR word (the error model) we can 

apply Bayes’ rule and search for a candidate which maximises the 

probability product. Such OCR correction ideas (hampered by 

hardware limitations) date back to 1964 [22]. 

In our approach we use a deep search for candidates which are 

neighbours of the OCR words, and evaluate them using the error 

model with the language model. 

We apply the language model in 2 stages. The first stage uses a 1-

gram model to reduce the size of the candidate lists, and then a 3-

gram model is applied combinatorially to pick the best suggestion 

path with respect to the language context.      

Both the document manager and kernel use language models to 

triage the incoming text, identifying between 60% and 70% of 

text as "beyond suspicion" and hence not requiring further 

processing.  

4.1 Error Model 
An OCR error model is vital in suggesting and evaluating 

candidates. At the heart of the error model is a confusion matrix 

giving conditional probabilities of character edits, using both 

single character edits and edits involving character pairs (such as 

rn and th). The probabilities can be moderated by a hint as to the 

prevailing OCR fidelity as observed at the document management 

level. 

The character edit probabilities stored in the confusion matrix are 

used in several ways. A word can be analysed to estimate its 

“fragility”, the probability that OCR may change it.  The matrix 

can be used to look up the possible correction edits applicable at 

each letter position of an OCR word, in order of conditional 

probability, as required by some of our suggestion generators. 

Finally the matrix can be used to help derive the probability of a 

false word O being generated by OCR given the assumption that 

candidate word W is the correct word. We use negative log 

probability units for this measure, calculated by deriving the most 

likely weighted multiple character edit path from W to O using a 

Levenshtein algorithm [6,23] modified to handle statistically 

weighted character split, pair and join operations as well as the 

usual substitute, insert and delete. Essentially, the cost of the path 

is the sum of the character edit costs, including the identity edit 

which also has a statistically derived cost. Our calculation also 

incorporates the fact that edits are not strictly independent, as the 

OCR process tends to be a length preserving text transformation 

(so excesses of deletes or inserts are penalised).  

We call the log measure of O conditional on W the “confusion 

cost”.  It is an informal measure of distance from W to O, but it 

does not define a strict metric space, nor is it a true measure of 

probability because it derives from the computed probability of 

the most likely path from W to O, rather than the probability sum 

over all paths. Nevertheless it is conceptually useful, and works 

excellently as the error model part of the noisy channel costing.  

We can also measure the similarity of W and O with a novel 

“reverse ocr” procedure.  We generate very low resolution glyph 

bitmaps for the word pair, using a generic font (based on linotype) 

and overlay the bitmaps in memory, iteratively adjusting 

alignments to find a reasonable position of correspondence, then 

calculate a bit correlation measure.  This similarity measure has 

been previously mapped as a confusion cost estimator, using 

simple regression on a sample of pairs.  So in any particular case, 

in practice, we can get a slightly improved confusion cost by 

using a linear combination of the matrix derived cost and (with a 

lower weight), the reverse OCR derived estimate. 



4.2 Language Model 
The language model is needed to contextually evaluate correction 

suggestions. We use word 1-grams, 2-grams and 3-grams with 

Kneser Ney style interpolated backoff [10]. The proportion of 

unseen n-grams is estimated by fitting a power law distribution. 

Final backoff from word 1-gram uses character 4-grams plus any 

available lists of good words held in a Bloom Filter [2], and our 

named entity list. Numerics are specially treated, and a case 

variant, and word affix analysis is done to obtain a good 

probability estimate for non-lexicon words. 

The 1-gram lookup is different to the 2-gram and 3-gram, and is 

incorporated into the lexicon, structured as a minimal directed 

acyclic word graph [5] which can also yield the extent of partial 

word match, the number of words with any given prefix, and an 

indication of whether a full word can be reached or not after the 

addition of various numbers of characters. 

As well as usual left-to-right n-grams, we use a “gap 3-gram” to 

give the probability of a word conditional on its left and right 

neighbours, and to identify likely candidates, given the neighbour 

words. This is used to help generate correction candidates, as a 

triage tool, and in final checking of the best correction candidate 

paths.  

We also use word 5-grams in the document manager. These are 

used without smoothing or backoff to help triage “known good” 

and to generate suggestions (complementary to the suggestions 

generated in the kernel modules).   

4.3 Candidate Generation 
We need to generate suggestions before any correction can take 

place. Suggested words can come from the language model or the 

error model.  Our system allows for multiple suggestors to be 

“plugged in”. An example of when the language model is most 

useful is in a garbled phrase such as “Antarctic xxxxx sheet”. 

Obviously the suggestion is “ice” and can easily be obtained using 

word trigrams in a way that does not need further explanation.  A 

different example is “The KvaiiKcllcal press” where the correct 

suggestion is “Evangelical”. This can actually be generated as a 

top suggestion by our current candidate generator using error 

model probabilities of the individual edits ‘K’->’E’, ‘ii’->’n’, ‘K’-

>’g’, ‘c’->’e’, and ‘l’->’i’.  It is non trivial and is described below.    

The main candidate generator starts with a “seed” word, which is 

a dubious OCR-generated word, and explores multiple character 

edit paths which have a promise of leading to a lexicon word 

within a reasonable probabilistic confusion cost. This search uses 

the lexicon restructured as a trie to make it easy to track character 

paths to words. An A* heuristic search [17] is used to cope with 

the complexity and ensure good paths emerge first.  

To prepare for generation from a particular seed, the edits possible 

at each character position are looked up in the confusion matrix to 

create a list of coded edits. Each edit code designates: up to 2 

emitted characters; the number of seed characters consumed (1, 2, 

or 3); and the cost (with high cost cut off). The edit cost is the 

scaled negative log probability of OCR emitting those characters 

conditional upon consuming the implied seed characters. The 

identity character edit has a low, but non zero, cost reflecting the 

character “fragility”. There are usually 90 to 100 edits listed per 

position. This seed structure could also be considered as a 

weighted finite state automaton with a state for each seed 

character and the transition arcs labelled by the emitted 

character(s) and with the weight being the edit cost. 

The A* search process traverses the lexicon trie and the seed edit 

structure. Each step involves popping the partial path with the 

lowest estimated completion cost off a priority queue, and 

extending that path by any seed edits possible which are also valid 

paths from the associated trie position, then for each such 

extension, calculating the new estimated completion cost and 

pushing it onto the queue. 

The completion cost heuristic we use is mainly based on number 

of residual characters in the seed, and the 4-gram character cost of 

that residual path. It is not technically “an admissible heuristic” so 

there is no guarantee that the first complete path is the best, but as 

we are gathering many suggestions, that is not a problem - when 

completed paths are popped off the queue, they are pushed onto a 

separate output priority queue after modifying the final 

accumulated path cost by weighting it with the language cost of 

the lexicon word. Our A* terminates when there is sufficient 

candidates of quality in the output queue.                         

The A* suggestion procedure uses the most CPU of the 

components in our correction system, so it needs to be efficient. 

We implement it with bit-mapped integer arrays, and use heuristic 

adjustment, high cost path pruning and duplicate detection. The 

priority queues are based on min-max heaps [1] so that queued 

cost ranges can be examined and the heap size kept small for the 

output queue. The Trie is split into several Tries, each covering 

different (but overlapping) subsets of the lexicon based on word 

length.  In future we may seek more efficiencies, for example by 

using a “divide and conquer” approach similar to that in [9].  

Because this candidate generation process is guided not by simple 

discrete edit distance summation, but by probability, it will choose 

likely 3, 4 or 5 letter edit combinations over unlikely 2 letter edits. 

However, it should be noted that we cannot guarantee, for 

example, to output all candidates in a Levenshtein distance of 2. 

This is because of the nature of our search and also because, as we 

are using fine grained costing, we effectively perform candidate 

filtering in the search rather than after having extracted all the 

neighbours.     

Candidates are also generated in other ways, apart from the word 

mutation method describe above: by splitting and joining at word 

level, from a “guess” using the left and right neighbouring words 

and the “gap 3-gram” of the language model, and from 

suggestions generated and supplied by the document manager. 

The suggestor collects candidates from the sub-models and adds 

them to a priority queue according to the sum of their unigram 

language cost (negative log probability) and their conditional 

confusion cost (negative log probability of the OCR word given 

the candidate word). Excessively costly suggestions are culled.  

When a word has many low cost suggested candidates, we take it 

as evidence that the OCR word is in a “crowded environment” 

with little redundancy and less chance of accurate correction, so 

we increase the suggestion cost values accordingly. 

4.4 Correction 
This final correction step is needed because we are automatically 

correcting. Therefore we need to apply similar judgements that a 

human operator would make in selecting the best combination of 

the final culled correction candidates from what can be trillions of 

possible combinations, using knowledge of language context 

balanced against the likelihood of the corresponding OCR words 

deriving from the chosen candidates.    

With poor quality OCR, there will be more dubious words, and 

more candidate lists in a block of words.  In addition, the paths 



through these lists are not simple, because we must cater for word 

joins and word splits. 

We use a two stage approach for this final language costing.  The 

first stage is to advance a single best word path from left to right, 

minimising the error and trigram language cost sum at each step 

but using only the top 3 suggestions for any word. 

The second stage is to iteratively apply stochastic variational 

changes to this initial path, using a simple style of simulated 

annealing named “record to record travel” and described by 

Dueck [7]. At each iteration we select and change a candidate and 

calculate the effect on the total path cost, temporarily accepting if 

near the best cost, and tracking the actual best path and its cost. 

The process terminates after a number of iterations based on the 

number of candidates.   

Although the best path will usually include many top ranked 

candidates, there are many cases where lower ranked suggestions 

are selected due to lower contextual cost. 

5. OBSERVATIONS AND EXPERIMENTS 

5.1 OCR confidence ratings 
In early development we analysed the ALTO XML CC attribute 

(character confidence) digits passed on from the OCR engine, 

trying to fit them mathematically to modify our error model. 

Unfortunately we gained little benefit, and abandoned their use. 

We noted that the small punctuation (dot, comma, quotes) were 

almost NEVER given low confidence, yet we know they are very 

unreliable. The letters O,C,E,G,I,c,i,l,1,t,S were usually rated as 

good, but M,W,g,b,m,w,d rated as bad. We assume letters which 

attract strong signals on a few feature detectors are given good 

confidences. Paradoxically, the fact that ‘i’ is highly similar to 

(and so frequently confused with) a very small cohort of letters, 

implies higher “confidence” that it will rarely be confused with a 

much larger set of other letters. 

5.2 Resilience to lexicon errors 
An effective lexicon needs to be derived from a large corpus 

similar to the texts to be corrected. Except for very modern texts, 

this means that the lexicon is likely to contain an unintended set of 

OCR artifacts, such as “hospltal” or “hononary” which are derived 

from common words via very common character edits, so that 

they have a corpus frequency greater than the cut off used in 

building the lexicon. Such words can be detected in the lexicon by 

letting our system process its own lexicon, noting words with a 

correction candidate having a very small confusion cost and a 

significant language cost difference. The reason this can work is 

that we have a fine grained confusion cost. 

We automatically flagged 1.7% of our test lexicon word types as 

dubious (possibly OCR artifacts). However, due to the fact that 

common words, and especially short words, have many close 

orthographic neighbours, the OCR artifacts can only be practically 

removed from the lexicon by including a human in the loop. This 

is simple, but we decided to leave these OCR artifacts in the 

lexicon for our tests. It had no real effect on performance, because 

the suggestor easily generated the correct word and the noisy 

channel logic selected that correct word.  

Of course, the nature of language itself implies that no lexicon can 

be perfect, but we can take comfort that most imperfections lie in 

the extreme low frequency long tail, and do not have much impact 

on correction performance when using frequency based n-grams. 

We note the need to derive the correction lexicon from a 

homogeneous relevant corpus, as a corpus containing both 

modern and historical word spelling variants may yield 

infelicitous corrections to the more frequent modern spelling 

form, if the spelling edit also happens to be a very common OCR 

edit. 

5.3 Empirical study of errors 
We have a mechanism where words in context can be judged to 

select the best combination of correction candidates by balancing 

the error and language model costs.  But good correction is 

impossible without a good candidate generator. 

Our main candidate generator takes a possibly corrupt OCR word 

and searches for a "close" lexicon word. Because this can be very 

CPU intensive, we wanted to study some OCR errors to find out 

the "close enough" point to bound the candidate search. 

So we extracted every word error pair from OCR aligned with 

ground-truth newspaper text. We considered all word to word 

correction pairs, where neither word contained blanks, and 

removed normal word punctuation (brackets, quotes, commas, 

periods etc). We retained all such word pairs, including numerics, 

stranded punctuation, uncorrectable garbage, corrections to non-

lexicon words, and even a few bad pairs resulting from alignment 

error or imperfect "ground-truth". This yielded 8991 token pairs 

(6512 OCR word types). We used our candidate generator in 

stand-alone mode to generate up to 12 candidates per OCR token. 

To illustrate why we do not attempt correction by using standard 

error lists, we note that the simple word 'the' had 95 error types 

even in our relatively small sample, with 28 of them being seen 

once only. 

The spelling correction literature, as surveyed by Kukich [14], has 

various estimates of the closeness of correction pairs. Damerau [6] 

suggested that 80% of spelling errors are one edit [6, 23] away 

from the correct word. However, spelling and OCR errors differ. 

OCR engines are not tricked by rhyme, rhythm, reason, grammar 

or keyboards, but are affected by visual noise bursts. Tanner [21] 

showed a high character error rate of 16.4% and word error rate of 

22% in 19th century newspapers, which (given the average word 

token length of 5) is suggestive of error bursts - multiple character 

edits per word. 

We will use E1, E2, E3 etc to denote an edit distance (number of 

character substitutions, deletions and insertions).  We found in our 

sample that 90% of the pairs were separated by E3 or less. If the 

residual 10% were "hopeless cases" we could bound our search at 

E3 with a saving of CPU time. However, we found that for 46.8% 

of these residual "bad" words, the correct suggestion was 

generated. And in a surprising 30.8%, the top ranked suggestion 

was correct at E4, E5 and E6. Even at E6, we observed 21 correct 

top ranked suggestions for the 99 OCR tokens at E6. 

The easy pickings at E4, E5 and E6 were usually longer words 

which are less affected by multiple edits as they have fewer 

orthographic neighbours that they can be confused with. They are 

also more valuable words, likely to make good search terms, and 

so are worth correcting. 

Simply using E6 as a fixed bound on candidate search is not 

viable as most tokens are less than 6 letters long (with a median 

between 4 and 5 letters). Candidate lists based on such an 

approach would be enormous. 

This is why we chose an A* search of the lexicon for our 

candidate generator, using a fined grained probabilistic measure 

of editing cost, with character edit costs derived in advance 

statistically. The candidates emerge in approximate probability 

order, and likely E4, E5 and E6 candidates will therefore appear 



before unlikely E1 and E2 candidates, and we stop the search 

when enough "good" candidates have emerged (between 1 and 

20). 

To illustrate the quality of suggestions, Table 1 shows OCR and 

the top suggestion (which is an “easy” correction) at E6, E7 and 

E8, all of which are very difficult to guess.  

Table 1.  Example E6, E7 and E8 suggestions 
 

OCR Top Suggestion 

Parhumuitar} Parliamentary 

I.iulwuvB Railways 

Itegtniont Regiment 

niltfltory adultery 

uj.rccu.eut agreement 

couniutfc.o committee 

cnuipuii company 

dctoimiuatJOu determination 

uiidcrtikcr'a undertaker's 

 

6. TESTS AND RESULTS 

6.1 Datasets 
Raw OCR text from a relevant corpus, paired with ground-truth 

text, is needed. It is hard to find good ground-truth, and it is 

tempting to start with good text and artificially synthesise a 

degraded image for OCR, but we wanted real data, preferably 

from early newspapers processed by ABBYY FineReader, as that 

constitutes the bulk of material.  

We attempted an evaluation on 3 datasets: 

1. “Mostly-corrected” medium length articles from the Sydney 

Morning Herald, 1842-1954. These yielded a large amount of text, 

but as we discovered, poor quality ground-truth. 

The National Library of Australia’s Trove Digitised newspapers 

[16] site contains over 10 million OCR'ed newspaper pages. Each 

page is zoned into its component articles. The public can correct 

the OCR [12], and as of March 2014, over 120M column-lines of 

text have been corrected. Although this seems a vast amount, only 

a small percentage of articles have any corrections [11]. 

From the NLA newspapers web site, it is possible to retrieve for 

an article both the most recent version of the text (incorporating 

all corrections made to-date) and a complete history of corrected 

line pairs (showing the text before and after the correction and the 

date of the correction). Hence, by obtaining a copy of the current 

version of the text and then by backing-out corrections in reverse-

date order on that copy, it is possible to recreate the original text, 

as OCR'ed.  For this dataset we chose medium length (between 

100 and 1000 word) news articles having a total number of line 

corrections of at least 85% of the number of lines in the article. 

Note that this does not mean that the entire article or even 85% of 

it has been corrected, as a single line corrected 85 times in a 100 

line article would meet this 85% criteria, but it does serve to 

identify articles which humans have intensively corrected. 

It soon became apparent that is it not possible to treat even 

extensively corrected versions of articles as ground-truth. 

Amongst the problems: (i) Not all lines with errors have been 

corrected. Even with the 85% criteria, correctors often leave a 

heading or final paragraph uncorrected, or just miss 'obvious' 

errors in a line and don't correct the line. Human corrected lines 

often contain uncorrected errors such as “e” erroneously OCR'ed 

as “c” (as in “Thc”) and “l” OCR’ed as “I” (as in “ltaly”). (ii) Line 

boundaries are changed. Some correctors occasionally move text 

across line boundaries for no apparent reason. Sometimes this is 

minor, such as combining both parts of a hyphenated word on its 

starting line and removing the hyphen. Other times, it is less 

predictable, and extensive. (iii) Words are changed. Quite 

commonly names formed as, for example “M'Donald” are 

corrected as “McDonald”. Occasionally, newspaper typos are 

corrected, and words are deliberately changed rather than 

corrected. (iv) Content is added. Frequently the OCR and zoning 

process misses text at the start or end of line, entire lines, or a 

paragraph, typically at the end of an article.  

Such issues create many problems when attempting to evaluate 

the performance of an OCR correction process, both because the 

human ground-truth is not accurate and because the raw OCR is 

totally missing some content that appears in the ground-truth. Due 

to the poor quality of the ground-truth in this dataset, we 

abandoned our attempt to use it for performance evaluation. 

2. Completely corrected medium-length articles from the Sydney 

Morning Herald, 1842-1954. A randomly selected subset of 

Dataset 1 containing 49 thousand words in 159 articles 

additionally corrected by us to ground-truth. 

3. Article text from the Library of Congress Chronicling America 

newspaper archive. A randomly selected sample of 18 thousand 

words from 49 articles from 5 U.S. newspapers manually 

corrected by us to ground-truth. 

All 3 datasets are available for download, linked from the 

overProof evaluation dataset web site [18]. 

6.2 Methodology 
We corrected the text as OCR’ed using the methods described in 

this paper, giving us three versions of the text for each article: (i) 

text as OCR'ed, (ii) ground-truth version of this text, produced by 

human correction of the OCR text, and (iii) automatically 

corrected text. 

We performed three measurements on each dataset: 

1. Recall improvement. Finding an article in a search engine 

relies on the indexing of the correct article text. This measurement 

calculates the reduction in search misses achieved after article text 

correction. It does this by comparing the number of unique 

ground-truth words found amongst the OCR text with the number 

found amongst the corrected text. 

2. Readability improvement. The readability of article text is 

determined by the accuracy of the digitised text. This 

measurement calculates the reduction in the number of erroneous 

words after article correction. Note that whereas the recall 

improvement measurement requires that only one of possibly 

several occurrences of a ground-truth word be accurate, this 

measurement considers how many occurrences are correct. 

3. Weighted-recall improvement. Similar to the first 

measurement, but attempts to also weigh words based on their 

entropy, placing a higher value on the correction of words whose 

appearance in a search index is more likely to result in more 

relevant documents being returned to a searcher [8]. 

Testing was performed as follows: 

1. Words are extracted from each version by splitting the text on 

white space. Leading and trailing punctuation are discarded. 

Single character words, words starting with currency symbol or 



containing numbers and other non-alphabetic characters (other 

than hyphen and apostrophe) are discarded. Hyphenated words are 

changed to their non-hyphenated form. Words are changed to their 

lower-case form. 

2. The entropy of ground-truth words is calculated for the dataset. 

3. A set of unique words appearing in each version (original OCR, 

ground-truth and corrected) is created, recording the number of 

times they appear in each version. 

4. Words from the ground-truth version are checked for 

appearance in the original OCR and corrected version. For the 

recall measurement, only presence or absence is noted. For the 

readability/word-correction measurement, the number of 

occurrences of words is counted. For the weighted-recall 

measurement, the log of the occurrence count of the word in the 

article is multiplied by the word document entropy. 

6.3 Results 
The results of tests on Datasets 2 and 3 are shown in Table 2 and 

Table 3 respectively. 

We plotted reduction in recall misses against uncorrected recall 

for each article in Dataset 2 (Figure 1) and recall for each article 

in Dataset 2 before and after correction (Figure 2).  Equivalent 

graphs for Dataset 3 show similar distributions of good reductions 

in recall misses across a range of OCR’ed text qualities. 

Table 2.  Recall and word error for Dataset 2 

Measurement Uncorrected Corrected Improvement 

Recall misses 16.2% 6.6% 59.3% 

Word Error rate 18.5% 6.3% 66.0% 

Weighted recall misses 16.2% 7.1% 56.0% 

 

Table 3.  Recall and word error for Dataset 3 

Measurement Uncorrected Corrected Improvement 

Recall misses 16.0% 6.7% 57.7% 

Word Error rate 19.1% 6.4% 66.5% 

Weighted recall misses 16.0% 7.4% 54.0% 

 

7. RELATED WORK 
Because we are describing a complete end to end correction 

system, there is related work in the fields of spelling correction, 

speech recognition, statistical language modelling, DNA 

matching, and search algorithms which is too numerous to list.  In 

the specific field of approximate search for candidates in lexica, 

there are some other relevant approaches.  Gerdjikov, Mihov, 

Mitankin and Schulz [9] describe a highly optimised method of 

extracting all candidates at a given Levenshtein edit distance. 

Huldén [13] describes another approach using A* search. Boytsov 

[3] surveys the state of the art in this area as at 2011. 

 

8. COMPARISON WITH HUMAN 

PERFORMANCE 
Anecdotally, a human corrector (HC) is able to achieve high 

quality results, although individual HC units differ greatly. An HC 

takes years of expensive training, but even then has a mediocre  

 

Figure 1. Reduction in recall misses 

 

 Figure 2. Recall before and after correction 

 

vocabulary, much less than the size of our lexicon. A typical HC 

is poor on character by character checking and can miss very 

obvious errors, especially involving the letters i, l, I, 1, 0, O, o, e, 

c.   

Although expensive, there is a good supply of HC units. 

Unfortunately, quality is variable and performance is context 

dependent - topic areas such as football or science or knitting 

show large individual differences in HC performance. Ideally, HC 

units should be tested before use. As HC units are analog in nature 

rather than digital, they cannot deal directly with the digitally 

stored text data but need devices to bridge the “analog gap” which 

lowers the HC correction rate. Maximum observed sustained rate 

for an HC on Australian newspapers [16] is about 8 words per 

minute, and appeared to be limited mainly to the specialised area 

of genealogy. By comparison, software such as ours can process 

10,000 times faster on a single commodity server, and this rate 

can be arbitrarily increased by adding extra hardware. Note also 

that while silicon based computer hardware performance increases 

annually, the basic HC hardware performance has not changed in 

millennia.  Multiple HC units can be used in parallel to correct a 
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corpus, but the work rate can drop as correction coverage 

increases. This is due to “selective topic attachment” and the fact 

that individual HC units can disengage when the availability of 

uncorrected text articles in that topic dwindle to low values.   

Humans may be slow, but they have a deep understanding of 

language, which is especially required in the final step in 

automated text correction - judging the best sentence composed 

out of the automatically generated word correction candidates.  

This ability can be measured by the Microsoft Research sentence 

completion challenge [24], the state of the art solution being a 

recurrent neural network [15]. This could point to the future of 

automatic OCR correction but unfortunately requires (as with 

humans) a long training time and a large amount of training data 

(which may be unavailable in historical text). 

9. CONCLUSIONS 
Searching or mining a digitised text corpus can be fundamentally 

limited by the inconsistent quality of OCR text. 

We described an unsupervised OCR correction system using 

statistically weighted multiple character edits, novel visual 

correlation adjustment, a high context language model, and 

multiple candidate generators, including a deep best-first 

candidate search. 

Our experiments confirmed that quality candidates can be 

generated at large edit distances.  

The implementation was tested against ground-truth historic 

newspaper text from several sources, and delivered a reduction in 

word error rate of over 60% and a reduction in search-misses of 

over 50%. While gathering ground-truth, we noted that even 

articles corrected by humans are far from perfect. 

Our system is a fully functional end to end batch OCR corrector 

delivering corrected texts at a high rate on a standard commercial 

"cloud" server. We are satisfied with the principles of the 

approach and we are currently investigating minor modifications 

to further enhance correction performance. 

10. REFERENCES 
[1] Atkinson, M. D., Sack, J. R., Santoro, N., & Strothotte, T. 

(1986). Min-max heaps and generalized priority queues. 

Communications of the ACM, 29(10), 996-1000. 

[2] Bloom, B. H. (1970). Space/time trade-offs in hash coding 

with allowable errors. Communications of the ACM, 13(7), 

422-426. 

[3] Boytsov, L. (2011). Indexing methods for approximate 

dictionary searching: Comparative analysis. Journal of 

Experimental Algorithmics (JEA), 16, 1-1. 

[4] Brants, T., & Franz, A. (2009). Web 1T 5-gram, 10 European 

languages version 1. Linguistic Data Consortium, 

Philadelphia. 

[5] Daciuk, J., Mihov, S., Watson, B. W., & Watson, R. E. 

(2000). Incremental construction of minimal acyclic finite-

state automata. Computational linguistics, 26(1), 3-16. 

[6] Damerau, F. J. (1964). A technique for computer detection 

and correction of spelling errors. Communications of the 

ACM, 7(3), 171-176. 

[7] Dueck, G. (1993). New optimization heuristics: the great 

deluge algorithm and the record-to-record travel. Journal of 

Computational Physics, 104(1), 86-92. 

[8] Dumais, S. T. (1991). Improving the retrieval of information 

from external sources. Behavior Research Methods, 

Instruments, & Computers, 23(2), 229-236. 

[9] Gerdjikov, S., Mihov, S., Mitankin, P., & Schulz, K. U. 

(2013). Good parts first-a new algorithm for approximate 

search in lexica and string databases. arXiv preprint 

arXiv:1301.0722. 

[10] Goodman, J. T. (2001). A bit of progress in language 

modeling. Computer Speech & Language, 15(4), 403-434. 

[11] Hagon, P. (2013) Trove Crowdsourcing Behaviour. In 

Australian Library & Information Association Information 

Online 2013 Proceedings. Retrieved from 
http://www.information-

online.com.au/pdf/Tuesday_Concurrent_2_1125_Hagon.pdf 

[12] Holley, R (2009).  How Good Can It Get? Analysing and 

Improving OCR Accuracy in Large Scale Historic 

Newspaper Digitisation Programs. D-Lib Magazine, 15(3/4), 

1082-9873. 

[13] Huldén, M. (2009). Fast approximate string matching with 

finite automata. Procesamiento del lenguaje natural, 43, 57-

64. 

[14] Kukich, K. (1992). Techniques for automatically correcting 

words in text. ACM Computing Surveys (CSUR), 24(4), 377-

439. 

[15] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). 

Efficient estimation of word representations in vector space. 

arXiv preprint arXiv:1301.3781. 

[16] National Library of Australia (2014, January 5). Trove 

Digitised Newspapers. Retrieved from http://trove.nla.gov.au/newspaper 

[17] Och, F. J., Ueffing, N., & Ney, H. (2001, July). An efficient 

A* search algorithm for statistical machine translation. In 

Proceedings of the workshop on Data-driven methods in 

machine translation -Volume 14 (pp. 1-8). Association for 

Computational Linguistics. 

[18] Project Computing (2014, January 5). OverProof Evaluation 

Data. Retrieved  from 

http://overproof.projectcomputing.com/datasets/ 

[19] Shannon, C. E. (1948). A mathematical theory of 

communication.  Bell System Technical Journal, 27(7,10), 

370-423, 623-656. 

[20] Shannon, C. E. (1951). Prediction and entropy of printed 

English. Bell system technical journal, 30(1), 50-64. 

[21] Tanner, S., Muñoz, T., & Ros, P. H. (2009). Measuring mass 

text digitization quality and usefulness. D-Lib Magazine, 

15(7/8), 1082-9873. 

[22] Vossler, C. M., & Branston, N. M. (1964, January). The use 

of context for correcting garbled English text. In Proceedings 

of the 1964 19th ACM national conference (pp. 42-401). 

ACM 

[23] Wagner, R. A., & Fischer, M. J. (1974). The string-to-string 

correction problem. Journal of the ACM (JACM), 21(1), 

168-173. 

[24] Zweig, G., & Burges, C. J. (2011). The Microsoft Research 

sentence completion challenge. Technical Report MSR-TR-

2011-129, Microsoft.

 

http://trove.nla.gov.au/newspaper
http://overproof.projectcomputing.com/datasets/

